micro parts to market... faster

Microfluidics – Case Study

Microfluidic devices are designed to control extremely tiny droplets of fluid such as blood, drugs, or gel-like fluids. Tiny channels, v-grooves, holes, and valves are accurately positioned on tiny chips and surfaces to push, pull, pressurize, or atomize these fluids in order to give the microfluidic device the required functionality. Key to the efficient working of microfluidic devices are sub-micron surface finishes, extremely accurate adhesion and positioning of features in relation to other features, and an understanding of the fluid flow and interactions with external forces — such as static, temperature, pressure, and humidity.

MES creates features in the sub-micron range using several different processes including micro molding, micro machining, lithography, and direct ion etching. Some applications among many others that require this level of precision and positioning include microfluidic chips, insulin and other drug delivery valving, and drug aspirators.


« See All Projects