micro parts to market... faster

Micro Motor Drug Delivery

8/31/17     Researchers at the University of California San Diego have created micromotors to treat bacterial infections in the stomach. These micro sized vehicles (half the width of a human hair) swim rapidly through the stomach to release antibiotics at a desired pH. This micromotor-enabled delivery approach is a promising new method for treating stomach and gastrointestinal tract diseases with acid-sensitive drugs.

When people take orally administered drugs such as antibiotics and protein-based pharmaceuticals, gastric acid in the stomach can wreck havoc with them. Because of this, drugs used to treat bacterial infections, ulcers and other diseases in the stomach are normally taken with additional substances, called proton pump inhibitors, to suppress gastric acid production. The problem arises when taken over longer periods or in high doses, proton pump inhibitors can cause adverse side effects including headaches, diarrhea and fatigue. In more serious cases, they can cause anxiety or depression. To conquer this, the micromotors have a built-in mechanism to neutralize gastric acid and effectively deliver their drug payloads in the stomach, without the use of proton pump inhibitors.

Each micromotor consists of a spherical magnesium core coated with a protective layer of titanium dioxide, followed by a layer of the antibiotic clarithromycin, and an outer layer of a positively-charged polymer called chitosan that enables the motors to stick to the stomach wall. This binding is enhanced by the propulsion of the micromotors, which is fueled by the stomach’s own acid. The magnesium cores react with gastric acid, generating a stream of hydrogen microbubbles that propel the motors around inside the stomach. This reaction temporarily reduces the amount of acid in the stomach, increasing the pH level enough to allow the micromotors to release the drug and perform treatment. The normal stomach pH is restored within 24 hours.

Clinical trials on mice with Helicobacter pylori infections were done. The micromotors, loaded with clarithromycin, were administered orally once a day for five consecutive days. Afterwards, researchers evaluated the bacterial count in each mouse stomach and found that treatment with the micromotors was slightly more effective than when the same dose of antibiotic was given in combination with proton pump inhibitors.

So what happens to these micromotors after they deliver their drug? Since they are made of mostly biodegradable materials, the magnesium cores and polymer layers are dissolved by gastric acid without producing harmful residues.

Our Dry Powder Inhaler is ready for your application

8/16/17     DoseOne, LLC holds multiple patents and prepared to partner the most innovative DPIs available today, the DoseOne™ Single Dose Powder Inhaler.

Below is an article in FiercePharma about the dry powder inhaler we have blogged about in the past.

Development of the DoseOne™ single dose powder inhaler (US Patents #7,832,399 B2 and #8,360,057 B2) required a multi-disciplinary team approach, as any such drug delivery device needs to combine not just design skills, but also software and mechanical engineering capabilities, and expertise in analytical science and industrialization. From concept to creation, the DoseOne™ device was designed to be sympathetic to the requirements for mass manufacture and regulatory compliance.

The two patents associated with the DoseOne™ single dose powder inhaler cover the unique dosing mechanism of the device, and the ability to use the technology for dual-drug delivery. The DoseOne™ inhaler contains multiple, segregated air pathways, which keeps powder hold-up to a minimum, and makes device optimization for powder properties considerably easier. Using this technology which drives the DoseOne™ inhaler, designs have been developed and patented for dual drug delivery, the device allowing for simultaneous release of two different and separately contained drugs.

From a manufacturability point of view, the key advantage of the DoseOne™ is its simplicity and intuitive use (one motion and complete). Through the expeditious use of design and micro manufacturing expertise, DoseOne™ is an easy to manufacture and assemble 3-component device. The simplicity is of great importance as an inexpensive drug delivery option, costing $0.16 per device at full volume. The ultra-precise nature of the design and components also ensures that the device is small, which makes it easy to carry and package for mass drug distribution.

The inherent characteristics, size, and nature of the drug delivery technology make the DoseOne™ inhaler hugely advantageous for numerous end use applications. One obvious area of interest is in third world treatments of pandemics and epidemics, where there is an enormous emphasis on safety of drug delivery, simplicity of drug delivery, and ways to show compliance with dose administered. The DoseOne™ is equipped with a simple dose readiness indicator and a dose delivery indicator, and its size and ease of use (relying on patient inhalation rather than propellant technologies) make it well suited to environments where local health services are sub-optimal. In addition, for mass drug administration the low unit cost of the device is obviously hugely significant.

The DoseOne™ is extremely easy to validate, and is ideal for drop-shipping with all this implies in reduction of total inventory management and shipping costs, which can reduce the end use cost of the device.

The simplicity of the design also makes it easy to revise to accommodate specific formulations. Of especial importance, however, is the ability using the DoseOne™ inhaler to simultaneously pierce capsules containing different drugs, meaning that the drugs mix within the body, so there is no necessity to address drug interaction issues as would be the case if the drugs were mixed in one capsule.

DoseOne™ is a perfect example of what can be achieved if an innate understanding of micro manufacturing design and manufacturing is combined with an understanding of the regulatory environment that exists around drug delivery devices these days, and a realization of the potential for innovative solutions that cater for mass “self” administration of drugs in a cost-effective and safe way.

The Market for DPIs.
Powder inhalers deliver drugs in the form of dry powder directly to the lungs, and are typically used in the treatment of respiratory diseases such as Chronic Obstructive Pulmonary Disease (COPD), asthma, and emphysema. However, due to many of their innate characteristics and advantages as a drug delivery mechanism, there is burgeoning interest around the use of dry powder inhalers (DPIs) in the pharmaceutical and medical device sectors.
In many ways, DPIs have become more prevalent as they have been tailored for markets previously catered for by Metered Dose Inhalers (MDIs), which many patients find difficult to use, which rely on propellants that have come under more and more legislative scrutiny, and — from the device manufacturers and pharmaceutical company’s perspective — are often expensive to make. It is generally agreed that DPIs are easier to use as they simply rely on patient inspiration to deliver the drug, and are less likely to lead to side-effects such as irritation of the airways.

As with all families of drug delivery devices, the balance for drug companies is between affordability and functionality. Unit cost per device is obviously critical, as is the ability for the drug to be delivered in the correct dose, and for there to be minimum drug wastage.

The DoseOne™ Solution
DoseOne™ is a single-use disposable DPI, and as such overcomes many of the problems associated with multi-use DPIs and MDIs. As a single dose device, for example, it minimizes dose-to-dose consistency risk, and also negates the requirement for priming needed by many devices, with all this implies in respect of drug wastage.

In addition, as DoseOne™ is a single use disposable device — and therefore a new device is used for each dose — it eliminates the frequent problem of powder caking and flaking which can affect dose volumes in multi-dose devices.

Also, as a single use device, the issue of, and problems associated with, dose counting — which preoccupies the FDA and other health organizations around the world — is made redundant. In its current state, DoseOne™ contains a simple dose readiness indicator as well as a dose delivery indicator in the form of a viewing window, therefore promoting patient compliance by confirming the dose is ready and has been completely administered.

As such, DoseOne™ satisfies the regulatory demands previously only achieved by complicated and expensive designs. So for any pharma or device manufacturer looking to locate a novel, cost-effective, and efficient drug delivery option please call or email Donna Bibber at dbibber@doseone.com to discuss potential partnerships.